Handheld Satellite Data: The Importance of Turning Off Internet Applications

A while back, Mark posted a blog article regarding Spyware/Malware and it’s effect on your Satellite connection. If you haven’t had a chance to read it, here’s the link: http://blog.ocens.com/?p=321

Going off this premise, today I’m going to talk about applications that use your Internet connection and their affect on your Satellite data service, ESPECIALLY the handhelds. So first, let’s put these connections into context so it’s something we can understand.

 

Throughput

I apologize in advance… as this will get a little technical, but we will have to pull out some math to explain the underlining concepts.

When talking about files and their size, it’s important to understand the measurement standard used. All data, regardless of what it is, can be broken down to the smallest measurement unit, a bit. A bit is a binary code; think of it as a light switch, it’s either on (1) or off (0) the next measurement up from a bit is a Byte, which is 8 bits. From there, it follows the 1024 sequence of Kilobytes, Megabytes, Gigabytes, Terabytes and so forth:

bit
8 bits = Byte
1024 Bytes = 1 Kilobyte (KB)
1024 KB = 1 Megabyte (MB)
1024 MB = 1 Gigabyte (GB)
1024 GB = 1 Terabyte (TB)

When dealing with a data connection, however, you often hear companies talk about their transfer rate, bandwidth or throughput. This is a measurement of how fast data can be pushed over their service. Think of them as pipes… the faster the throughput, the larger diameter the pipe.

Throughput is measured in how many bits per second you’re able to push across the connection. The abbreviated listing ALWAYS has the “B” in lowercase, which stands for bits, as apposed to the “B” in uppercase, which stands for Bytes. For example, here are some typical connections and their advertised throughput:

Fiber Optic = 1 Gigabit/second [1Gbps] (1,000,000,000 bits per second)
Cable Internet = 30 Megabits/second  [30Mbps] ( 30,000,000 bits per second)
DSL = 7 Megabits/second [7Mbps] (7,000,000 bits per second)
56K Dialup Modem = 56 Kilobits/second [56Kbps] (56,000 bits per second)

Let’s do a little math. Let’s say we have a normal email that we want to send, and we want to attach 3 pictures that total 4Megabytes (MB) the email is fairly large… a page in length, so we will say the measurement of it is 6 Kilobytes (6KB) So, in total, the email size is 4.06 MB (4102 KB) If we break it down to the same measurement as the Throughput (bits) that means the email is 3360584 bits ( 4102 x 1024 x 8 )

Applying the throughput speeds listed, that means the email will take:

.033603584 seconds on Fiber
1.1201195 seconds on Cable
4.800512 seconds on DSL
600.064 seconds on a 56k Modem

So, what about Satellite connections then?

VSAT V3 = 3Mbps (3,000,000 bits per second)
Class 1 BGAN = 492Kbps (492,000 bits per second) (T&T Explorer 700 is a Class 1)
Class 2 BGAN = 464Kbps (464,000 bits per second) (Hughes 9202 is a Class 2)
FBB 150 = 150Kbps (150,000 bits per second)
Iridium 9xxx = 2.4Kbps (2400 bits per second)
Inmarsat ISatPhone Pro = 1.2Kbps (1200 bits per second)

So, that same email would take:

11.20119 seconds on a VSAT V3
68.29997 seconds on a Class 1 BGAN
72.42152 seconds on a Class 2 BGAN
224.0239 seconds on a FBB 150
14001.49333 seconds (that’s 3.89 hours!) on an Iridium handheld
28002.98667 seconds (that’s 7.78 hours!) on an Inmarsat ISatPhone Pro!!

Talk about pushing a watermelon though a garden hose!

Also keep in mind that these are theoretical times, since we haven’t considered overhead data usage to establish and maintain the connection, addressing information, error correction, and other things that occur in a data transfer.

If you take into account issues that can occur like what’s discussed in our blog article Satellite Data Connections Explained (http://blog.ocens.com/?p=296) it’s a feat of engineering that data can be sent at all! And this is just the time spent sending what you WANTED to send… so this brings us to the topic of the article:

 

Applications Internet Usage

Now a day, there are MANY programs running on your computer that utilize the Internet in one way or the other. Operating systems like Windows or Mac OSX use the Internet to pull updates or submit error reports. Internet browsers like Internet Explorer, Chrome, Safari & Firefox use the Internet to pull updates as well. Antivirus programs use the Internet to update their virus definitions. Java and Flash pull updates from the Internet. Even hardware drivers can check into the Internet with the intent to pull updates or submit error reports.

On a typical Internet connection this isn’t an issue, and most of these programs are setup to pull these updates without the need for you, the user, to monitor and initiate them.

It’s important to note however, that they only know is that the Internet is “available” not what type of Internet connection it is.

These updates can range widely in size… anywhere from a couple KB all the way up to major updates (like version changes, or service packs) that can be in the MBs or even GBs!! Imagine pulling down Windows 7’s Service Pack 1 (73.7MB through Windows Update) over an ISatPhone Pro connection…

If any of these programs realize an Internet connection is available, and wants to pull an update on slow connection, it will bog that connection down further or even cause the connection to fail completely (watermelon the size of a house trying to go through a garden hose)

On top of that, if your computer contracts malware, spyware or viruses, they all try to push info over the Internet as well.

Then to compound the issue further, you pay for the usage done on a satellite device; per MB on broadband terminals like the FBB 150 or BGAN, or per minute on handhelds like the Iridium 9xxx or Inmarsat ISatPhone Pro.

 

How To Address These Issues

There are a couple ways to combat the issue of moving data over a Satellite Internet connection.

The first is to make sure your computer is clean of spyware, malware and viruses. You can also go through every application on your computer and verify that they are not set to download updates automatically. Though a tedious process, doing so will GREATLY decrease the amount of data trying to be pushed over your connection.

You can also employ devices like the OCENS Sidekick (http://www.ocens.com/Sidekick-Satellite-Wi-Fi-Router-P760C96.aspx) that employs a firewall and proxy server to manage that connection between your Satellite device and your computer, making sure that only the data you want to send is what gets through.

You can also employ services like WeatherNet, OCENSMail and OneMail to compress the data you’re sending… making it as small as possible to save time & money.

Any and all of these products truly are “Value-Add” services meant to maximize the value a Satellite Internet connection provides, while helping minimize the cost of using them.

 

If you have any questions, or would like to know more about maximizing your satellite connection please give OCENS a call.

Leave a Reply